The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 1 1 1 1 0 X^2 0 0 X^2 0 X^2 X^2 2X^2 0 0 X^2 X^2 0 2X^2 X^2 2X^2 2X^2 0 X^2 2X^2 0 X^2 2X^2 2X^2 2X^2 2X^2 0 0 0 X^2 X^2 0 X^2 X^2 2X^2 0 0 X^2 X^2 0 2X^2 X^2 2X^2 2X^2 0 X^2 2X^2 0 X^2 2X^2 2X^2 2X^2 2X^2 0 0 0 X^2 X^2 0 X^2 X^2 2X^2 X^2 0 0 X^2 X^2 0 0 X^2 0 2X^2 X^2 2X^2 X^2 2X^2 0 X^2 X^2 0 2X^2 0 0 X^2 X^2 2X^2 2X^2 2X^2 2X^2 X^2 0 0 X^2 2X^2 0 0 X^2 2X^2 X^2 X^2 2X^2 0 2X^2 0 X^2 X^2 0 2X^2 0 0 X^2 X^2 2X^2 2X^2 2X^2 2X^2 X^2 0 0 X^2 2X^2 0 0 X^2 2X^2 X^2 X^2 2X^2 0 2X^2 0 0 X^2 X^2 2X^2 0 0 0 X^2 2X^2 2X^2 0 2X^2 2X^2 2X^2 X^2 0 2X^2 0 2X^2 X^2 X^2 0 X^2 X^2 X^2 2X^2 X^2 0 X^2 2X^2 0 0 X^2 2X^2 2X^2 2X^2 X^2 X^2 X^2 2X^2 2X^2 0 0 0 X^2 X^2 2X^2 2X^2 X^2 0 0 0 2X^2 X^2 0 2X^2 0 X^2 0 X^2 2X^2 2X^2 2X^2 X^2 X^2 X^2 2X^2 2X^2 2X^2 0 0 X^2 generates a code of length 68 over Z3[X]/(X^3) who´s minimum homogenous weight is 132. Homogenous weight enumerator: w(x)=1x^0+30x^132+54x^134+20x^135+486x^136+108x^137+12x^138+6x^141+6x^144+4x^147+2x^201 The gray image is a linear code over GF(3) with n=612, k=6 and d=396. This code was found by Heurico 1.16 in 0.109 seconds.